

Low Wind Speed Technologies Program Subcontract Overview

FY2005 DOE Wind Program Implementation Meeting November 17, 2004

S. Schreck and A. Laxson
NREL's National Wind Technology Center
Golden, CO

Goal and Impact

Goal

- Utility class, landbased
- -3 ¢/kW · hr in Class 4
- -2012 target date

Impact

- Shorten average distance to load center x 5
- Expand developable land area x 20

Authority

- Directed by Administration
- –Monitored by OMB through DOE
- –Managed via COE performance (ATTU)

Program Structure

Technical areas

- Concept Design Studies (\$200K, 6 months)
- Component Development (\$2M, 2-3 years)
- Prototype Development (\$8M, 2-4 years)

Time phasing

- Phase I RFP, October 2001
- Phase II RFP, June 2003
- Phase III RFP, 2007 (projected)

Guiding Principles

- Public/private partnerships
 - Industry initiatives
 - Intramural research and testing
- Flexible and adaptive
 - Multiple pathways
 - Repeated opportunities
- Performance based
 - Annual Turbine Technology Update
 - Periodic review

WindPACT Drivetrain/PE

Global Energy Concepts

- Study report published August 03
- http://www.nrel.gov/docs/fy03osti/33196.pdf
- Generator/PE fabrication complete
- Awaiting dynamometer availability

Northern Power Systems

- Study report published May 04
- http://www.nrel.gov/docs/fy04osti/35524.pdf
- Generator/PE fabrication nearly complete
- Awaiting dynamometer availability

WindPACT Blades

Global Energy Concepts

- Blade system design studies (30 m 70 m)
- Material focus coupon testing
- Advanced materials and different processes
- Tension/compression, static/fatigue

TPI

- Blade system design studies (30 m 70 m)
- Structural focus thick truncated geometry
- Test thick truncated airfoils in wind tunnel
- Design, fabricate, test 9 m subscale blade

Phase I Concept Studies

- Berger-ABAM
 - Hybrid concrete-steel tower
 - Final report published
- Advanced Energy Systems
 - Advanced independent pitch control
 - Final report in preparation

Phase I Components

- Northern Power Systems
 - Advanced PE for LWST applications
 - Preliminary Design Study complete
 - Final configuration selected
 - Detailed Design Review 11/30/04

Phase I Prototypes

- Clipper Quantum Turbine
 - DGD-1 testing completed July 04
 - DGEN-Q being installed in dynamometer
 - Targeted completion 1/1/2005
 - Test site selected (Medicine Bow)
- General Electric Multi-Megawatt Turbine
 - Parametric studies review December 04
 - Subscale component validation
 - Detailed design
 - Full-scale fabrication
 - Field testing

Phase II Concept Studies (Landbased, Initiated)

- Behnke, Erdman, Whitaker
 - Investigation of the Application of Medium
 Voltage Variable Speed Drive Technology to
 Improve the COE from Low Wind Speed Turbines
- Peregrine Power
 - Breakthrough In Power Electronics From SiC
- New Generation Motors
 - Conceptual Study of Multi-Unit Common Shaft,
 Variable Air-Gap, Axial Flux Permanent Magnet
 Generator for Use in Low Wind Speed Turbines
- General Electric

Sandia Integrated Wind Energy/Desalination System

Phase II Concept Studies (Landbased, Initiated)

- Native American Technologies
 - Automated Thermal Plate Forming of High Stiffness, Self Erecting Towers for Low Wind Speed Turbines
- Global Energy Concepts Control
 - COE Reductions through Active Control of Rotor Aerodynamics and Geometry
- Global Energy Concepts O&M
 - Development of an Operations and Maintenance Cost Model to Identify Cost of Energy Savings for Low Wind Speed Turbines

Phase II Concept Studies (Offshore, Initiated)

AWS Truewind

- Development of Atmospheric Profiling and Modeling Techniques to Evaluate the Design and Operating Environment of Offshore Wind Turbines in the Mid-Atlantic and Lower Great Lakes
- Massachusetts Institute of Technology
 - Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations
- Concept Marine
 - Semi-Submersible Platform and Anchor Foundation
 Systems for Wind Turbine Support

Phase II Components (Blades, Pending)

- TPI
 - COE Reductions through Active Control of Rotor Aerodynamics and Geometry
- Knight & Carver
 - Sweep-Twist Adaptive Blade Design and Fabrication with Laboratory and Atmospheric Test Verification
- General Electric
 - Advanced Ultra-Long Blade (AUB)

Phase II Components (Landbased, Pending)

- Genesis, LLP
 - Convoloid Gearing for Wind Turbine Applications
- Clipper
 - Development of the Clipper VAR Control System
- Valmont
 - Development of a Self-Erecting Tower System
- Tennessee Valley Infrastructure Group
 - Nacelle Erection System for Tall Towers

Phase II Prototypes (Pending)

- NPS Direct Drive HAWT
 - Development of a 2MW Direct Drive Wind Turbine For Low Wind Speed Sites
- General Electric
 - Multi-Megawatt Offshore System Development

Summary

- Public/private partnerships
- Diverse program portfolio
- Viability and progress
- 3 ¢/kW·hr in Class 4 by 2012

